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_CHNICAL MEMORANDUM

SINGLE WALL PENETRATION EQUATIONS

1. INTRODUCTION

Concern about the effects of orbital debris impacts on space vehicles in low-Earth orbit has

prompted a study of penetration predictor equations for a single plate structure. Since the mid-60's,

many equations have been developed to predict penetration of a single thin plate by a meteoroid or

orbital debris projectile. This document is a report of a comparison of five of these equations for

accuracy and effectiveness.

Each equation included in this study was developed with a unique set of test parameters.
Actual conditions under which a spacecraft is required to survive may or may not be within the

parameter range for an equation. Therefore, extreme care should be taken when using any predictor

equation since each can only be used to predict penetration for a specific set of parameters. After

some study of test parameters, it will become obvious that the majority of expected projectile veloci-
ties cannot be tested with current technology. Theoretical predictions must be relied upon for these

occurrences until further advances can be made in hypervelocity impact technology.

It is not the purpose of this report to recommend the correct equation(s) to use in analyzing a

vehicle, but rather to compare the equations and how they were developed to give the designer a

better feel for how the design will stand up to hypervelocity impacts of orbital debris projectiles.

Hypervelocity impact testing should always be included in the design/verification schedule for any
vehicle which will be exposed to the orbital debris environment for any length of time.

One should not neglect to analyze a vehicle which has potential safety problems. Each

component should be carefully evaluated to discover possible dangerous effects of hypervelocity

impacts. A vehicle should have an acceptable reliability for astronaut safety as well as an acceptable

reliability for no functional failure.

2. SINGLE PLATE PENETRATION EQUATIONS

Two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations devel-

oped for the Apollo project (Rockwell and Johnson Space Center (JSC)), and one recently revised
from JSC (Cour-Palais) are the five single plate penetration equations compared in this section for

accuracy and effectiveness. The following subsections will discuss each of these empirical equations.

2.1 Fish-Summers Equation

The following equation was developed by Fish and Summers. 1 They used test results with

velocities which ranged from 0.5 to 8.5 km/s, metallic targets which ranged in density from a magne-

sium-lithium alloy to a beryllium-copper alloy, and with aluminum alloy projectiles. 2 This equation

was recommended for design to establish the threshold penetration (ballistic limit) of thin, ductile,

metal plates.

7 --!
t = K1m°'352V 0"8 5p 6 ,



where

and

t = target thickness (cm)

K1 = a constant for target

m = projectile mass (gm)

p = projectile density (gm/cm 3)

V = impact velocity (km/s)

K1 = 0.57 for aluminum alloys such as 2024-T3, 2024-T4, 6061-T6, and 7075-T6.

Additional values for K1 are given in the reference.

The 0.70 factor was used to determine the plate thickness to prevent a penetration from

spalling (spallation limit), as recommended by Coronado, Gibbins, Wright, and Stern)

The Fish-Summers equation is the simplest of all the equations presented here. Target

material properties effects are taken care of by the constant K 1.

2.2 Schmidt-Hoisapple Equation

The following equation was developed by Holsapple and Schmidt, 4 with test results obtained

by many investigators such as Payne, Gault, Wedekind, et al. Some tests done by Payne used pro-

jectiles of tungsten, carbide, lead, copper, stainless steel, titanium, magnesium and aluminum; tar-

gets of stainless steel and aluminum; and velocities ranging from 4 to 8 km/s. Some tests done by

Gault used Pyrex spheres as the projectiles, water as the target, and velocities ranging from 1.5 to
6.0 km/s.3

'p _-0.159 [2.68FtulO.236

d= 2.06,1_t) t _ "J '

where

2

d = projectile diameter (in)

t = target thickness (in)

pp = projectile density (lb/in 3)

Pt = target density (lb/in 3)

Ftu = ultimate tensile strength for target (lb/in 2)

V,, = impact velocity (normal component of the projectile relative velocity) (ft/s).

Again the 0.70 factor was used for the spallation limit.



The Schmidt-Holsappleequationinvolves the targetmaterialstrengthand density as well as
projectile density to bettercharacterizethematerialbehaviorof impact.This is the only equationof
thosepresentedin this paperusingEnglish units.

2.3 Rockwell Equation for the Apollo Project

There were two independently developed empirical equations for the Apollo project. One was

developed by Rockwell and the other by Burton Cour-Palais at JSC. 5 The Rockwell equation shown

below was developed from test results using aluminum projectiles and targets with impact velocities

up to 8 km/s. The JSC (Cour-Palais) equation will be discussed in subsection 2.4.

where

For crater depth:

p = 1.38dl.lBH-O.25po.spt°'167V°.67

For ballistic limit:

tb = 1.8p .

For spallation limit:
ts = 3.0p,

p = crater depth on target (cm)

tb = target thickness for ballistic limit (cm)

ts = target thickness for spallation limit (cm)

d = projectile diameter (cm)

pp = projectile density (gm/cm 3)

Pt = target density (gm/cm 3)

BH = Brinnell hardness for target

V = impact velocity (km/s).

This equation involves target density and material hardness as well as projectile density to

characterize the behavior of impacts.

2.4 JSC (Cour-Palais) Equation for the Apollo Project

As mentioned in the previous section, NASA/JSC engineers developed the equation shown

below during the Apollo project, independent of the Rockwell equation but in appearance very
similar. 5



where

For craterdepthwith projectile density{-_t < 1.5):

For ballistic limit:

For spallationlimit:

p = 5.24dl.OS6BH-O-25po.5fl-fo.167E-O.33V 0.67

tb= 2.0p.

t, = 3.0p,

p = crater depth on target (cm)

tb = target thickness for ballistic limit (cm)

ts = target thickness for spallation limit (cm)

d = projectile diameter (cm)

pp = projectile density (gm/cm 3)

fit = target density (gm/cm 3)

BH = Brinnell hardness for target

E = Young's modulus for target (GPa)

V = impact velocity (km/s).

This equation involves target density, the modulus of elasticity, and material hardness as
well as projectile density to characterize the behavior of impacts.

2.5 JSC (Modified Cour-Palais) Equation

The newest and recently distributed equation modified from the Cour-Palais equation for the

Apollo project by Burton Cour-Palais at JSC is shown below. 6

For crater depth:

For ballistic limit

p= 5.24dll-_sBH-°'25(-P_t)°'5(_-_)_3

tb= 1.8p.

4



where

For spallation limit:
ts=2.2p,

p = crater depth on target (cm)

tb = target thickness for ballistic limit (cm)

ts = target thickness for spallation limit (cm)

d = projectile diameter (cm)

pp = projectile density (gm/cm 3)

Pt = target density (gm/cm 3)

BH = Brinnell hardness for target

V,, = impact velocity (normal component of the projectile relative velocity) (km/s).

C = speed of sound for target (km/s)

This equation uses dimensionless quantities by making ratios of target and projectile densi-
ties and velocities.

3. COMPARISONS OF FIVE SINGLE PLATE PENETRATION EQUATIONS AND TEST
RESULTS

The comparison of the five equations discussed in section 2 will be discussed in subsection
3.1. Then the comparison of these equations with test results will be discussed in subsection 3.2.

3.1 Comparisons of Single Plate Penetration Equations

Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and

masses of projectiles for various velocities, varying the material properties of both the projectile and

target for the five single plate penetration equations. The calculated results for a 2017 aluminum

projectile and a 2024-T3 aluminum target are shown on table 1. The results were plotted on diameter

versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities

ranging from 2 to 15 km/s (as defined for orbital debris in reference 7) with several different thick-
nesses, i.e., 0.040 in (0.106 cm), 0.050 in (0.127 cm), 0.080 in (0.203 cm), and 0.100 in (0.254 cm) for

2024-T3 and 6061-T6 aluminum targets. Figures 1 and 2 show the results for ballistic and spallation

limits for a 6061-T6 target 0.040-in (0.106-cm) thick. To show the variation with target density,

figures 3 and 4 show the results for ballistic and spallation limits for a 2024-T3 aluminum target.

As discussed before, these five equations were derived from test results, with velocities

ranging up to 8 km/s. Therefore, the predicted values for the projectile's mass and diameter above

8 km/s are currently impossible to verify by experiment.
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Figure 1. Penetration resistance (ballistic limit) of single wall structure 6061-T6
aluminum with t = 0.040 in.
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Figure 1 shows the penetrationresistance(ballistic limit) of a single-wall structurefor the
five penetrationequations.The Schmidt-Holsappleequationappearsto predict the largest valuesfor
particlediameters,given an impact velocity.The JSCequationfor theApollo project appearsto
predict the lowest valuesfor particle diameters,for velocitiesbelow7.5 km/s. Then the Fish-
Summersequation predictsthe lowestcritical diametersfor velocitiesabove7.5 km/s. For the spal-
lation limit (fig. 2), thesepredictionsarenearly thesameasfor theballistic limit, excepttheJSC
equationfor the Apollo project predictsthe lowestcritical diametersup to about9.5 km/s; the Fish-
Summersequationyields the lowestvaluesabove9.5km/s (fig. 2). This behavioris the samefor
different thicknessesof the samematerial (6061-T6AI). In the caseof 2024-T6aluminum for the
ballistic limit, figure 3 showsthat theSchmidt-Holsappleequationpredictsthe largestcritical
diameters;the lowestcritical diametersarepredictedby theJSCequationfor theApollo projectfor
velocitiesup to 5 km/s, andby the Fish-Summersequationabove5 km/s. For the spallation limit, as
canbeseenon figure 4, theJSCequationfor the Apollo projectpredictsthe lowest critical diameter
up to 6.5 km/s, and the Fish-Summersequationpredictsthe lowestcritical diameterabove6.5 km/s.
The other two equations(Rockwell for Apollo andJSCmodifiedCour-Palais)predict valuesbetween
the valuespredictedby theseequations.The diameterspredictedby the Schmidt-Holsappleare
between1.5to 2 timeslarger thanthe onespredictedby the JSCequationfor the Apollo project or
Fish-Summersfor the 2024-T3 aluminum.Therefore,basedon sphericalprojectiles,the masses
predictedby the Schmidt-Holsappleequationare4 to 7 timeslarger thanpredictedby the JSCequa-
tion for the Apollo project or the Fish-Summersequation.

The currentenvironmentdefinesanaveragedebrisdensityasanaluminum density, i.e.,
2.8gm/cc.Therearemanypeoplethatbelievetheuseof differentaluminumalloysas theprojectile
cancausea big differencein theballistic limit. Figures5 through9 showeachequationwith various
aluminumalloy projectiledensitiesfor the ballistic limit, for a 6061-T6aluminumtargetwith 0.050-in
(0.127-cm)thickness.Thereis a significantdifferencein impacteffectsby various projectile materi-
als,but not by various alloys of thesamematerial.Thesefiguresshow that usingvarious aluminum
alloy densitieswill haveabout2.6- to 3.5-percentdifferencein the predictedprojectile diameters.
Eachequationis affectedvery little by changesin the projectile density,thus theseequationspredict
very little effect on impact damage for projectiles of these similar materials. In fact, even the calcu-

lated differences may fall within the scatter of the test data. Projectiles of dissimilar materials, how-

ever, would be expected to show significant differences in the predicted critical diameters.

3.2 Comparisons With Test Results

Nineteen hypervelocity impact tests of single plate aluminum shields were performed at JSC

for the Marshall Space Flight Center (MSFC) (table 2).

Two out of 19 tests used 2017 aluminum alloy for the projectile, and the rest used 1100

aluminum alloy. The projectile diameters ranged from 0.0156 in (0.0396 cm) to 0.0625 in (0.1588 cm),

and the projectile velocities ranged from 5.20 to 7.48 km/s. Two materials (2024-T3 and 6061-T6)

were used for the single wall (target), with thicknesses varying from 0.040 in (0.102 cm) to 0.190 in

(0.483 cm).

Results from 14 of the tests (groups 1 through 4 from table 2) were compared with the pre-

dicted values of the five single plate penetration equations. These tests consisted of two alloys of

aluminum targets (2024-T3 and 6061-T6) and two different thicknesses per alloy: 0.040 in
(0.102 cm) and 0.063 in (0.160 cm) for 2024-T3, and 0.050 in (0.127 cm) and 0.080 in (0.203 cm) for

606 l-T6. Figures 10 through 13 show the test results for each condition.

9
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t = 0.050 in. Comparison of aluminum alloy projectile densities with

Schmidt-Holsapple equation.
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Rockwell Equation for Apollo, 1984
with Various Aluminum Alloy
Projectiles

2.80 gm/cm3(Average)

o 2.81 gm/cm3(Upper Limit)

• 2.62 gm/cm3 (Lower Limit)

3 4 5 6 7 8 9 10 11 12 13

Impact Velocity (km/sec)

14 15

Velocity

km/sec

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Projectile Diameter cm

2.62 gm_m3 2.80 gm_m3 2.81 gm/cm3

0.09286 0.09010 0.08995

0.07254 0.07038 0.07027

0,06088 0.05907 0.05897

0.05314 0.05156 0.05148

0.04756 0.04614 0.04607

0.04330 0.04201 0.04194

0.03991 0.03873 0.03866

0.03715 0.03605 0.03599

0.03484 0.03381 0.03375

0.03288 0.03190 0.03185

0.03118 0.03025 0.03020

0.02970 0.02881 0.02877

0.02839 0.02754 0.02750

0.02722 0.02641 0.02636

Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with

t = 0.050 in. Comparison of aluminum alloy projectile densities

with Rockwell equation for Apollo.
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JSC Equation for Apollo, 1984
with Various Aluminum Alloy
Projectiles
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Velocity

km/sec

Projectile

2.62 gm/cm3
0.08103

Diameter cm

2

3 0.06265 0.06071

4 0.05220 0.05058

0.045315

2.80 gm/crn3

0.07852

0.04391

6 0.04036 0.03911

7 0.03660 0.03547

8 0.03363 0.03258

9 0.03120 0.03024

10 0.02919 0.02828

11 0.02747 0.02662

12 0.02600 0.02519

13 0.02471 0.02395

14 0.02358 0.02285

15 0.02257 0.02187

2.81 gm/cm3

0.07839

0.06061

0.05050

0.04383

0.03904

0.03541

0.03253

0.03019

0.02824

0.02658

0.02515

0.02391

0.02281

0.02183

Figure 8. Penetration resistance (ballistic limit) of single wall structure 6061-T6 aluminum with
t = 0.050 in. Comparison of aluminum alloy projectile densities with JSC equation for Apollo.
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JSC (Cour-Palals) Equation, 1989
with Various Aluminum Alloy
Projectiles
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Velocity

km/sec

Projectile Diameter cm

2.62 gm/cm3
0.09082

2.80 gm/cm3

0.088002

3 0.07030 0.06812 0.06801

4 0.05862 0.05680 0.05671

5 0.05091 0.04934 0.04925

6 0.04538 0.04397 0.04390

7 0.04117 0.03989 0.03982

8 0.03784 0.03667 0.03660

9 0.03513 0.03404 0.03398

10 0.03286 0.03185 0.03179
, ,, ,,,, ,,

11 0.03094 0.02999 0.02993

12 0.02929 0.02838 0.02833

13 0.02785 0.02698 0.02694

14 0.02657 0.02575 0.02571

15 0.02544 0.02465 0.02461

2.81 gm_m3
0.08786

Figure 9. Penetration resistance (ballistic limit) of single wall structure 606 l-T6 aluminum with

t = 0.050 in. Comparison of aluminum alloy projectile densities with JSC (Cour-Palais) equation.
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All five equations predicted the penetration that resulted from the tests using 2024-T3

aluminum targets with 0.040-in (0.102-cm) thickness (fig. 10). Also, all five equations predicted the
nonpenetrations that resulted using 2024-T3 aluminum targets with 0.063-in (0.160-cm) thickness

(fig. 11). For each of these two cases, only two data points were available from the tests, and the

projectile's size used were too far away from the ballistic limit curve to make any conclusions of the

equations' accuracies. Four of the equations, all but the Schmidt-Holsapple equation, correctly

predicted the no penetration results of four tests which used 6061-T6 aluminum targets With 0.080-
in (0.203-cm) thickness (fig. 12) and incorrectly predicted a penetration would occur for the fifth test

(No. 1203). The Schmidt-Holsapple equation correctly predicted that all five of the tests would

result in incomplete target penetration. Again there is not enough test data to determine the effec-

tiveness of these equations.

Finally, as shown on figure 13, two equations (Rockwell for Apollo and Schmidt-Holsapple)
incorrectly predict five of the six tests for the aluminum target 6061-T6 with 0.050-in (0.127-cm)

plate thickness. The Fish-Summers equation and JSC (Apollo) equation, on the other hand, correctly

predict five of th_ six tests, with test No. 1238 being the incorrectly predicted penetration. By looking
at figure 13, one can expect that the ballistic limit might exist somewhere between the modified

Cour-Palais and Fish-Summers equations, but additional tests are required to verify this.

4. RECOMMENDATIONS/CONCLUSIONS

In the previous section, the five single plate penetration equations were compared to each

other and with test results. As seen in section 3.1, these equations predict a wide range of projectile
diameters at a given velocity. Thus it is very difficult to choose the "right" prediction equation. The

thickness of the single plate could have a large variation by choosing a different penetration equation.

One can save much weight by choosing the most unconservative equation, which underesti-

mates the value for the penetrating projectile diameter. Therefore, the cost can be reduced signifi-
cantly, but this choice could result in unforeseen critical damage to the spacecraft or loss of the entire

spacecraft. On the other hand, one can design a conservative, well-protected spacecraft, but the

spacecraft could become very heavy. Thus, the launch and material costs would be increased.

Even though all five equations are empirically developed with various materials, and

especially for aluminum alloys, one cannot be confident in the shield design with the predictions

obtained by the penetration equations, without verifying by tests. Therefore, it is recommended that

designed shields should be tested with the actual configuration, and realistic velocities and materials

for projectiles, to prove the design will act as predicted, when impacted by a meteoroid or debris

particle. Only then can the design be declared acceptable for orbital operations.
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